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The present work studies in detail the acoustic behaviour of mu%ers with elliptical
cross-section. The e!ect of the chamber length and the location of the inlet and outlet ports
is considered. In addition, the eccentricity of the ellipse is taken into account, since it
generates important discrepancies with respect to those results obtained for the case of
circular chambers, mainly when practical values of eccentricity are considered. The
analytical description of the acoustic behaviour of chambers with elliptical cross-section has
been obtained via the truncated modal superposition method. First, the problem of natural
frequencies and mode shapes has been approached by considering the Helmholtz equation
in an elliptical domain, the solution of which can be expressed by means of Mathieu
functions. Then, the frequency response functions of the mu%er have been evaluated
through truncated modal superposition. The results obtained are shown to compare well
with those obtained from "nite element calculations and experimental measurements. In
addition, simple polynomial expressions have been developed in order to evaluate the cut-o!
frequency of concentric and non-concentric elliptical chambers, which is an important
feature since higher order modes start to propagate without attenuation above this
frequency. A simple polynomial expression is also developed to "nd the optimum location of
the outlet port in order to extend the range of acoustic attenuation of the mu%er. The
in#uence of the geometry on the acoustic performance and the propagation of elliptic modes
is studied for two con"gurations of interest, such as the expansion chamber and the
reversing chamber mu%er.

( 2001 Academic Press
1. INTRODUCTION

This work is justi"ed basically by the wide use of elliptical geometry in automotive
mu%ers, in addition to the relatively few reported studies of its acoustic attenuation
performance. Most of the references deal with rectangular and circular geometries, with
their associated simpli"cations in the mathematical aspects when an analytical approach is
considered.

The use of sudden area changes between pipes of di!erent cross-section is one of the most
important features in exhaust silencers. In the neighbourhood of sudden area changes, wave
propagation is three-dimensional even in the low-frequency range, due to the generation of
0022-460X/01/130401#21 $35.00/0 ( 2001 Academic Press
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evanescent higher order modes at the discontinuity. The acoustic "eld must be continuous,
and the plane wave propagation is not able to satisfy continuity without the presence of
higher order modes. The simplicity of the plane wave propagation model, however, has led
to its wide use for the prediction of the acoustic behaviour of mu%ers. Of course, the
analysis is valid only up to the cut-o! frequency, or even to a lower value, due to the loss in
accuracy that can be produced by the presence of evanescent modes. In order to improve
the results obtained via the plane wave model and increase the frequency range of the
analysis, it is possible to use other techniques, such as multi-dimensional analytical
solutions of the wave equation or numerical methods.

In the "rst case, three approaches have been found to be commonly used, which di!er in
the representation of the duct discontinuities. These are: the point source method [1], the
piston-driven model [2}4] and the mode-matching technique [5]. The simplest and most
inaccurate one is the point source method, since the inlet and outlet pipes are not
considered in the analysis. These ports are substituted by a point that represents the #ow
source. This assumption is acceptable when the dimensions of the ports are su$ciently
small compared with the size of the mu%er and the smallest wavelength of interest. The
piston-driven model takes into account the discontinuities in the inlet and outlet ports by
using the averaged pressures, whence results better than those obtained from the point
source method should be expected. The mode-matching technique is the most exact
analytical method, since it considers wave propagation in the whole domain (chamber and
pipes), and it is based on the continuity conditions of the acoustic "eld, but its major
disadvantage comes from the associated mathematical complexities. Any of these
techniques can be useful for high-frequency analysis, enabling the frequency range to be
extended beyond the plane wave limit, having important advantages such as the
computational requirements compared with other numerical methods. Their most
important drawbacks, however, are the geometrical limitations. The analytical solutions of
the wave equation are available only for a few simple geometries, namely rectangular,
circular and elliptical ducts, but fortunately these are widely used in noise control. As far as
the circular case is concerned, many researchers have obtained analytical solutions for its
acoustic performance, proposing ideas which are also useful for the elliptical case. Kim and
Soedel [1] applied the point source method combined with modal superposition to obtain
the four-pole parameters of three-dimensional cavities. Ih and Lee [2] studied the
performance of an o!set inlet/outlet expansion chamber and they included the e!ect of
a uniform mean #ow. These authors used the piston-driven model and evaluated the
four-pole parameters, and good agreement with experimental results was found in general.
Following the previous procedure, Ih and Lee [3] also investigated the behaviour of the
reversing chamber mu%er. Kim and Choi [4] considered a reversing chamber mu%er with
a temperature gradient, dividing the geometry into a number of segments with a constant
temperature. They applied the piston-driven model to take into account the inlet and outlet
ports, and the mode-matching technique to relate the pressure and velocity "elds between
segments. As bom [5] applied the mode-matching technique and obtained the four-pole
parameters in extended inlet/outlet expansion chambers, considering the propagation of
higher order modes. His results showed good agreement with experimental measurements
and the results from reference [2]. Selamet and Radavich [6] also adopted a similar
technique in order to study the e!ect of length on the acoustic behaviour of expansion
chambers. They studied the whole domain, that is, including wave propagation in the inlet
and outlet ducts (this is not taken into account when the point source method or
piston-driven model are applied). These authors used the continuity condition of acoustic
pressure and axial velocity to obtain an in"nite set of equations that provides the
coe$cients of the waves in the ducts. The length-to-diameter ratio was found to be quite
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important in the acoustic behaviour. When it is higher than 0)41, one-dimensional domes
are obtained in the transmission loss. When it is lower, a resonance behaviour with peaks
below the onset of any multi-dimensional mode is found to appear. Selamet and Ji [7] and
Selamet et al. [8] also studied the performance of circular expansion chambers with o!set
inlet/outlet and obtained the transmission loss for a number of geometries with di!erent
length, o!set distance and relative angle. They compared their results with boundary
element solutions, obtaining good agreement. The e!ect of the geometry on the
three-dimensional propagation was shown to be very important, since the propagation of
higher order modes can be eliminated by means of varying the relative location of the inlet
and outlet pipes. The acoustic behaviour of the reversing chamber was studied in detail in
reference [9], using the mode-matching technique. As will be shown, some of the trends
found in circular chambers are quite similar to those that appear in the elliptic case.
Recently, Selamet and Ji [10] have considered the acoustic behaviour of expansion
chambers with extended inlet/outlet. An analytical mode-matching model is presented for
the concentric geometry. It is shown that a suitable selection of the extended lengths can
lead to an excellent acoustic performance. All these analytical contributions are applied to
circular chambers, and so they are based on the use of Bessel functions and their properties.
In the case of the elliptical geometry, a few references have been found that deal with
analytical solutions, most of them applied to the propagation of electromagnetic "elds in
waveguides [11}13]. Other related papers dealt with the problem of #exural vibrations of
elliptical plates [14, 15]. In the case of the acoustic problem, Hong and Kim [16] considered
hollow and annular elliptical cavities and obtained the natural frequencies and mode shapes
by means of the Mathieu functions. This paper is the starting point of the work presented
here.

In the case of numerical techniques, the boundary element method and the "nite element
method (FEM) are the most interesting ones (see references [17, 18]). One of their major
advantages is the possibility to analyze problems with arbitrary geometry and general
boundary conditions, but at the cost of long computation times if su$cient accuracy is
desired at high frequencies, due to the large number of elements required.

In the present paper, the problem of wave propagation in elliptical chamber mu%ers is
considered from several points of view. The solution of the wave equation in elliptic
co-ordinates is expressed in terms of the Mathieu functions, obtaining the natural
frequencies and mode shapes. The modal superposition technique and the point source
method have been applied to a number of elliptical mu%ers (expansion chambers and
reversing chambers) to obtain their transmission loss. The results are compared with those
obtained from the "nite element method and from experiments, showing a good agreement.
Polynomial "tting curves have been evaluated to enable the prediction of the cut-o!
frequency in concentric and non-concentric elliptical chambers, as well as the optimum
location of the outlet, as a function of the eccentricity and the dimensions. Finally, the
in#uence of the geometry on the acoustic behaviour and the propagation of higher order
elliptic modes is studied.

2. ANALYTICAL MODEL

In Figure 1, the cross-section of an elliptical chamber is depicted, showing both Cartesian
and elliptic co-ordinate systems. The relationship between these two sets of co-ordinates is
given by [16, 19]

x"o cosh u cos v, y"o sinh u sin v, z"z. (1}3)



Figure 1. Elliptical cross-section.
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Here, o is half the distance between the ellipse focii. The wave propagation in
a three-dimensional domain is governed by the wave equation [20]
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where k"u/c
0

is the wavenumber.

2.1. NATURAL FREQUENCIES AND MODE SHAPES IN ELLIPTIC CO-ORDINATES

Equation (5) is solved applying the method of separation of variables and the rigid wall
boundary conditions [16], giving the mode shapes as
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are Mathieu functions of the "rst kind and order r, whereas Ce
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(u, qN ), r"1, 2,2 , (odd solutions) are modi"ed Mathieu functions of the

"rst kind, and ¸ is the chamber length. The terms q (for even solutions) and qN (for odd
solutions) are referred to as parameter of Mathieu equations, related with a separation
constant C, o and k by means of
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Finally, the associated angular frequency is given by

u"c
0

J4q/o2#(nn/¸)2 (9)

for even solutions (u6 will be used for the odd ones). These mode shapes are used in the next
section to evaluate the frequency response functions of a given chamber.

2.2. EVALUATION OF THE FREQUENCY RESPONSE FUNCTIONS

The acoustic response of the elliptical chamber may be obtained, once the mode shapes
are known, by means of modal superposition [1]. Assuming harmonic behaviour, the
relationship between the acoustic variables in the inlet and outlet of the chamber is given by
its four-pole parameters [20]
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where subscripts 1 and 2 refer to the inlet and outlet, respectively, and P and ; denote the
acoustic pressure and velocity complex amplitudes. The pressure at any point can be
written as a linear combination of the velocity at the inlet and outlet. This means that
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where H
ij

represents the frequency response function, de"ned as the pressure response at
co-ordinate i due to a velocity excitation at co-ordinate j. Both representations completely
de"ne the mu%er, and it is therefore possible to obtain equation (10) from equation (11) and
vice versa. The four-pole parameters can then be written as
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from which the transmission loss can be evaluated [20].
The frequency response functions are calculated considering the non-homogeneous wave

equation, which includes an excitation source [1]
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where mR is the function that de"ned the mass #ow coming into the chamber. Assuming that
point source conditions hold, the pressure response, that is, the frequency response function
at the point (u, v, z) with respect to an excitation applied at (u1, v1, z1), is obtained [1] as
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3. COMPARISON WITH MEASUREMENTS AND FEM RESULTS

In order to validate the previous theoretical developments, comparison between the
results obtained, measurements and numerical calculations will now be presented. The
magnitude used for comparison purposes is the transmission loss (TL), as usual. Explicit
comparison will be presented with experimental measurements performed with a modi"ed
impulse method [21], and with "nite element results, for two cases of interest: a concentric
chamber and a reversing chamber.

Figure 2 shows a concentric expansion chamber. As can be seen, it is symmetric about
both axes of the ellipse. This implies that only those modes that share the same symmetry
may propagate. Odd modes do not propagate since they are not symmetric about the major
axis of the ellipse, and among the even modes only those of the (2r, i) order, with r"0, 1,
2,2 and i"1, 2,2, may propagate, due to the fact that the even modes of (2r#1, i)
order are not symmetric about the minor axis. Then, the frequency response functions are
obtained retaining the propagating even terms in equation (17), setting the co-ordinates of
the inlet point to u1"0, v1"n/2 and z1"0, and those of the outlet point to u2"0,
v2"n/2 and z2"¸. A concentric chamber with major semi-axis a"0)23/2 m, minor
semi-axis b"0)13/2 m, eccentricity e"(1!b2/a2)1@2"0)8249 and semi-interfocal
distance o"ea"0)0948 m has been chosen. The inlet and outlet radii, R

1
and R

2
, are equal

to 0)033/2 m. In Table 1, the numerical values of the natural frequencies associated with
TABLE 1

Natural frequencies of transversal modes for a"0)23/2
and b"0)13/2 m

Even mode q parameter f (Hz)

(0, 1) 0)0 0)0
(0, 2) 6)201 2840)886
(0, 3) 22)987 5469)529
(1, 1) 0)595 880)002
(1, 2) 8)758 3375)984
(1, 3) 27)555 5988)356
(2, 1) 1)965 1599)213
(2, 2) 11)967 3946)369
(2, 3) 32)722 6525)741
(3, 1) 4)058 2297)985
(3, 2) 15)887 4547)053
(3, 3) 38)515 7079)831
(4, 1) 6)837 2982)855
(4, 2) 20)565 5173)364
(4, 3) 44)957 7649)012

Figure 2. Concentric expansion chamber.



Figure 3. Transmission loss of concentric expansion chamber with a"0)23/2 m, b"0)13/2 m,
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some of the transversal modes of the chamber are shown. As mentioned before, only the
even modes of the (2r, i) order may propagate due to symmetry reasons. This can be clearly
appreciated in Figure 3, in which the transmission loss is shown. The agreement observed
between the measurement, the "nite element result and the analytical prediction is
acceptable, all the more if one considers the complex shape of the curves for frequencies
above the range of pure plane wave propagation. This shape is determined by the onset
and/or propagation of transversal modes and their combinations with axial modes.
Transversal modes, whose position is indicated in the Figure, will be taken as reference for
comparison purposes. The "rst transversal mode to propagate is mode (2, 1), as indicated by
the typical collapse of the transmission loss at the associated frequency. Next, the onset of
mode (0, 2) can be observed, being the last one to appear in the frequency range represented.
It is worth noticing that the measurements exhibit spikes at frequencies corresponding to
modes which cannot propagate; one such spike can be found near the cut-o! frequency of
the (1, 1) mode, but the most evident case appears at the cut-o! frequency of the (3, 1) mode.
This should be attributed to the fact that the chamber used in the tests is not perfectly
concentric. The deviations between the measurement and both theoretical results for
frequencies above 2500 Hz may be justi"ed by this fact, in addition to the neglected viscous
e!ects. There are also some deviations and oscillations in the experimental result before
multi-dimensional propagation that seem to be associated with weak non-linearities due to
the pressure amplitude used in the impulse test [21].

For the case of the reversing chamber, the geometry considered is depicted in Figure 4.
The centres of the inlet and outlet sections are located on the major axis of the ellipse, so
that the chamber is symmetric about that axis. Only those modes that are symmetric with
respect to that axis will propagate, namely, all the even modes. The elliptical cross-section is
the same as for the concentric chamber discussed above, and thus the list of modes is that
shown in Table 1. The inlet and outlet radii, R

1
and R

2
, are equal to 0)051/2 m. Now the

co-ordinates of the inlet point are u1"0, v1"arccos (d
1
/o) and z"0, and for the outlet

point one has u2"0, v2"arccos (d
2
/o) and z2"0 (the o!set distances are less than the

semi-interfocal distance o). In the con"guration chosen (centred inlet), the distance between
the ducts is relatively small; hence, providing a test for the point source assumption. As it



Figure 4. Reversing chamber.

Figure 5. Transmission loss of reversing chamber with a"0)23/2 m, b"0)13/2 m, R
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408 F. D. DENIA E¹ A¸.
will be seen in a following section, this particular case of centred inlet eliminates the
propagation of the even modes of the (2r#1, i) order. The corresponding results are shown
in Figure 5, where the agreement is in general good, with an acceptable reproduction of the
main features found in the experimental curve. Now, all the even modes of the (2r, i) order
propagate, and those of the (2r#1, i) order do not (centred inlet), as indicated by the
corresponding collapses in the transmission loss.

As a conclusion, it may be stated that, for the purposes of the present work, the point
source representation gives a su$cient approximation to the physics of the problem, at least
for those cases in which the length of the chamber and the dimensions of the cross-section
are large enough in comparison with the diameters of the inlet and outlet.

4. DETERMINATION OF THE FIRST CUT-OFF FREQUENCY

As mentioned before, the plane wave model is valid only below the frequency
corresponding to the "rst transversal mode (cut-o! frequency) since above this frequency
transversal modes propagate without attenuation. Moreover, even below the cut-o!
frequency the plane wave model can lead to incorrect results, mainly in the vicinity of
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singularities, in which evanescent modes appear. Therefore, it is imperative to determine the
value of this cut-o! frequency. In the case of circular ducts, this may be easily obtained in
terms of the zeros of the Bessel functions [20]. If circumferential modes may propagate
(circular chambers with non-concentric inlet and/or outlet) the cut-o! frequency is

f
c
"1)84c

0
/(2nR), (18)

where R is the chamber radius. If only radial modes may propagate (concentric inlet and
outlet) the expression is

f
c
"3)83c

0
/ (2nR), (19)

so that the validity range for the plane wave model extends to more than double the limit
given by equation (18). In any case, the only relevant parameter is the radius. In the elliptic
geometry, however, the dependence is somewhat more complex, the two relevant
parameters being now a characteristic length such as o and the eccentricity e.

In the case of concentric chambers, these are symmetric about the two axes of the ellipse,
so only even modes of the order (2r, i), with r"0, 1, 2,2 , and i"1, 2,2, may propagate.
It is thus necessary to determine which of them is associated with a lower frequency. For the
even modes (0, 2) and (2, 1) (see Figures 6 and 7), the values of the parameters q

0,2
and q

2,1
may be obtained as a function of eccentricity from the rigid wall boundary condition, the
results being shown in Figure 8. It can be con"rmed that q

2,1
is always below q

0,2
. When the

eccentricity tends to zero, this reverts to the circular case so that (q
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)1@2 tends to
3)83/3)05 [20]. For instance, if one considers an eccentricity e"0)02, the value
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2,1
)1@2"(0)001468/0)000933)1@2"1)2543 is obtained, and thus the (2, 1) mode is the

"rst one to propagate. The cut-o! frequency is obtained from equation (9) as
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In view of the complexity of the Mathieu functions, for the corresponding cut-o! frequency,
a sixth degree polynomial has been "tted to the value f
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Figure 6. Even mode shape (0, 2).



Figure 7. Even mode shape (2, 1).

Figure 8. Parameters q
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valid for eccentricities e'0)05. For instance, the dimensions of one of the chambers
considered in this work are a"0)23/2 and b"0)13/2 m (e"0)8249 and o"0)0948 m). The
cut-o! frequency obtained from equation (21) is f

c
"1599)28 Hz, while the exact value is

1599.21Hz. If the value a"0)23/2 m is kept constant and the eccentricity decreases,
equation (21) gives a cut-o! frequency of 1437)39 Hz for e"0)05, which tends to the
theoretically expected cut-o! frequency of 1435)16 Hz for a cylinder of radius a (mode
m"2, n"0 [20]). In the case of the o!set inlet/outlet expansion chambers and reversing
chamber mu%ers, where the centre of the inlet and outlet pipes are located in the major axis,
all the even modes may propagate, since they are symmetric about this axis. The "rst even
mode to propagate is the mode (1, 1) (see Figure 9). Again, a sixth order polynomial was
"tted to the results obtained for f

c
o/c

0
, the expression begin now

( f
c
o/c

0
)
1,1

"7)0771]10~7#0)293e#2)1415]10~4e2#0)005 e3

#0)0021 e4!0)0013e5#0)0012e6, (22)



Figure 9. Even mode shape (1, 1).
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valid for eccentricities e'0)05. For example, with the same dimensions considered before,
the cut-o! frequency obtained from equation (22) is f

c
"880)005 Hz, whereas the exact

value is 880)002 Hz. If the value of a is kept constant to 0)23/2 m, setting e"0)05 in
equation (22) gives a cut-o! frequency of 866)4 Hz, which tends to the theoretically expected
cut-o! frequency of 865)8 Hz for a cylinder of radius a (mode m"1, n"0 [20]).

5. DETERMINATION OF THE NODAL LINE FOR THE MODE (2, 1)

As it has been shown [2, 8, 9] for circular chambers, by centering the inlet and o!setting
the outlet appropriately (towards the pressure nodal line of the "rst radial mode, which is
located at a distance of 0)6276 times the radius of the chamber from the centre), the acoustic
attenuation performance can be improved. This idea can be easily extended to the case of
elliptical geometries. The propagation of the elliptic mode (1, 1) can be eliminated by
locating the inlet in the centre of the chamber, since this point is contained in the nodal line.
Now, the question deals with the propagation of the following transversal mode, in that
case the mode (2, 1). In Figure 7, the nodal lines can be seen to be confocal hyperbolas. Since
the chambers considered have their inlet and outlet located in the major axis of the ellipse,
the intersection of this axis and the nodal line will provide the required point to allocate the
outlet if the propagation of mode (2, 1) is intended to be suppressed. This point is always
contained in the focal line (u"0), so its position in the major axis is given by equation (1),
and yields

x
c
"o cosv

c
, (23)

where x
c

is the o!set distance of the nodal line and v
c

is the corresponding elliptic
co-ordinate. The value of the o!set distance depends on some characteristic length,
such as the semi-interfocal distance o, and the eccentricity e. In order to obtain an easy
evaluation of the nodal line location, a sixth-degree polynomial has been "tted to the value
v
c
, giving

v
c
"0)7851#0)0076 e#0)3502e2!0)0533e3#0)9358e4!1)5667 e5#0)6556 e6, (24)

valid for eccentricities e'0)05. For the same dimensions as in the examples of section 4,
a value v

c
"1)0412 is obtained from equation (24) (the exact value is 1)0411). Equation (23)
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gives the o!set distance x
c
"0)0479 m. The e!ects of this o!set in the acoustic performance

of the elliptical chamber will be discussed in detail in the following section.

6. RESULTS AND DISCUSSION

The analytical model based on Mathieu functions and modal superposition, as well as
"nite element calculations, will be used to study the e!ect of some relevant parameters in the
acoustic behaviour of mu%ers with elliptical cross-section. As in the case of circular
chambers (see references [8, 9]), the length of the chamber and the relative location of the
inlet/outlet have to be considered. In addition, the eccentricity of the chamber has been
found to play an important role in the acoustic attenuation performance. The analysis is
applied to expansion chambers and reversing chambers with the inlet and outlet located in
the major axis of the ellipse. In all the cases considered, the cross-section of the chambers is
kept constant. Two eccentricities are taken into account: the "rst one has a high value,
e
1
"0)8249 (semi-axes a"0)23/2 and b"0)13/2 m), and its transversal natural frequencies

were shown in Table 1. The second one has a lower value, e
2
"0)3 (semi-axes a"0)177/2

and b"0)1688/2 m), and the natural frequencies can be seen in Table 2. In addition,
a circular chamber is included in the analysis (with a equivalent radius r

eq
"0)1728/2 m),

whose TL has been obtained via the method developed by Selamet and Radavich [6]
and Selamet and Ji [9]. In all the con"gurations, the inlet and outlet radii are
R

1
"R

2
"0)033/2 m.

6.1. EXPANSION CHAMBERS

Figure 10 shows the transmission loss for concentric expansion chambers with
¸"0)25 m and eccentricities e

1
and e

2
. In addition, the TL of a circular expansion chamber

(with r
eq
) is also depicted. The transmission loss for the elliptical geometry has been
TABLE 2

Natural frequencies of transversal modes for a"0)177/2
and b"0)1688/2 m

Even mode q parameter f (Hz)

(0, 1) 0)0 0)0
(0, 2) 0)348 2403)077
(0, 3) 1)175 4417)896
(1, 1) 0)076 1127)623
(1, 2) 0)655 3298)178
(1, 3) 1)687 5293)953
(2, 1) 0)219 1907)617
(2, 2) 1)05 4175)632
(2, 3) 2)308 6190)981
(3, 1) 0)416 2627)585
(3, 2) 1)509 5007)095
(3, 3) 3)012 7072)859
(4, 1) 0)666 3326)249
(4, 2) 2)027 5803)052
(4, 3) 3)777 7920)826



Figure 10. Transmission loss of concentric expansion chamber with ¸"0)25 m; **, analytical with e
1

(a"0)23/2 and b"0)13/2 m); } } }, same measured experimentally; #, same with "nite elements; } - } - } ,
analytical with e

2
(a"0)177/2 and b"0)1688/2 m); - - - , analytical [6] for circular chamber with r

eq
"0)1728/2 m.
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obtained via the point source method and "nite element calculations. In the case of the
chamber with eccentricity e

1
, experimental results are also depicted. The behaviour of all the

chambers is found to be almost the same below the "rst frequency of propagation of
three-dimensional waves (mode (2, 1) for e

1
) and, as the plane wave model predicts, the TL

level depends on the area ratio, which is the same for all the cases. The number of domes is
the same as that obtained for long circular chambers [6], and no relevant di!erences are
found between the curves. The "rst collapse in the transmission loss appears in the chamber
with a higher eccentricity, in which the transversal mode (2, 1) starts to propagate, whose
cut-o! frequency is equal to 1599)21 Hz. Above this frequency, the propagation in this
chamber is multi-dimensional, and signi"cant di!erences are found in comparison with the
rest of geometries (elliptical with low eccentricity e

2
and circular). The higher the

eccentricity is, the lower the cut-o! frequency will be, and in that sense, the acoustic
performance of the elliptical chamber is found to be worse than the associated with the
circular chamber with the same cross-section, whose "rst radial mode appears at a cut-o!
frequency of 2398)74 Hz, as can be seen in the Figure. This reduction of the cut-o! frequency
is also con"rmed by the transmission loss associated with the low eccentricity chamber but
in this case the behaviour of the elliptical geometry with e

2
is quite similar to that shown by

the circular geometry. The slight di!erences are related to the spikes of the elliptic modes,
which have negligible propagation since the geometry is very close to the circular case. As
an example, one spike appears at a frequency of 1907)62 Hz due to the mode (2, 1). The "nal
collapse appears when the mode (0, 2) starts to propagate. This is approximately for the
same frequency of the "rst radial mode of the circular chamber.

The results obtained for a short concentric expansion chamber are shown in Figure 11.
The elliptical con"gurations with eccentricities e

1
and e

2
and the circular chamber (with

radius r
eq
) have a length ¸"0)05 m. In addition, the plane wave model is considered for

comparison purposes. The transversal dimensions in all the cases are longer than the length
of the chamber. For circular cross-section, the dome behaviour breaks down when the
length of the chamber is short enough so that the inequality ¸/(2r

eq
)(0)41 is satis"ed. The

behaviour of the chambers is similar to that observed in reference [6]; that is, resonant



Figure 11. Transmission loss of concentric expansion chamber with ¸"0)05 m: **, analytical with e
1

(a"0)23/2 and b"0)13/2 m); #, same with "nite elements; } } } , analytical with e
2

(a"0)177/2 and
b"0)1688/2 m); ], same with "nite elements; - - - -, analytical [6] for circular chamber with r

eq
"0)1728/2 m;

} - } - } plane wave model.
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peaks are found at a frequency well below the onset of any higher order mode, due to the
transversal propagation of the waves, and the repeating one-dimensional domes do not
appear. Therefore, the plane wave model shows very little similarity with respect to the
multi-dimensional results. The elliptical chamber with eccentricity e

1
shows two peaks

associated with the transversal propagation in the chamber. In this case, the assumptions of
the point source method are not fully satis"ed, and so some slight deviations are found in
comparison with the "nite element curve in the high-frequency range. The e!ect of the
eccentricity on the reduction of the natural frequency associated with mode (2, 1) is the same
as commented previously, but now the three-dimensional propagation is mainly due to the
reduced length of the chamber rather than the reduction of the cut-o! frequency. The
transmission loss for the circular chamber and the elliptical one with eccentricity e

2
is found

to be almost the same, except the slight spikes corresponding to the elliptic modes.
An intermediate case is considered in Figure 12, in which the transmission loss is shown

for ¸"0)10 m. The circular chamber satis"es the condition ¸/(2r
eq

)'0)41, and so
a well-de"ned one-dimensional dome is found with the "rst pass band at a frequency c

0
/

(2¸)"1700 Hz, the results being quite similar to those obtained by means of the plane
wave model below the propagation of the mode (2, 1). The same can be said for the elliptical
chamber with e

2
, whose acoustic behaviour is basically the same. However, the transversal

propagation in the geometry with eccentricity e
1

produces a peak very close to the cut-o!
frequency of the mode (2, 1) and there is no complete dome in the transmission loss. Now
the situation is di!erent to the case of ¸"0)05 m, since with this latter length all the
geometries show resonant peaks in their transmission loss, but with ¸"0)10 m it is possible
to obtain a dome behaviour or resonant peaks by changing the eccentricity. The acoustical
performance of elliptical chambers is more complex than that of the circular geometry, in
the sense that not only the length of the chamber but also the eccentricity have to be taken
into account. Moreover, the substitution of the elliptical geometry by the circular one with
the same cross-section can lead to incorrect results when the eccentricity is increased, the
di!erences being stronger in shorter chambers, in which the transmission loss considerably
di!ers even well below the cut-o! frequency.



Figure 12. Transmission loss of concentric expansion chamber with ¸"0)10 m; **, analytical with e
1

(a"0)23/2 and b"0)13/2 m); #, same with "nite elements; } } } , analytical with e
2

(a"0)177/2 and
b"0)1688/2 m); ], same with "nite elements; - - - , analytical [6] for circular chamber with r

eq
"0)1728/2 m;

} - } - }, plane wave model.

Figure 13. Analytical transmission loss of elliptical expansion chamber with ¸"0)35 m and eccentricity e
1

(a"0)23/2 and b"0)13/2 m): **, concentric chamber; } } } , centred inlet, o!set outlet chamber with o!set
distance x

c
"0)0479 m.
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The e!ect of o!setting the outlet is now studied. As discussed earlier in the case of
concentric expansion chambers, the collapse in the TL curve is due to the propagation of
the mode (2, 1). This can be eliminated by a suitable o!set of the outlet pipe to the
corresponding nodal line, whose position was found and expressed in terms of a polynomial
"tting (equation (24)). This o!set allows the modes (1, 1) and (3, 1) to propagate, but this can
be solved if the inlet is located at the centre of the ellipse since this point is contained in the
nodal line of these modes. Figures 13}15 show the transmission loss for the elliptical
chamber with eccentricity e

1
, considering the concentric and o!set con"gurations



Figure 14. Analytical transmission loss of elliptical expansion chamber with ¸"0)10 m and eccentricity e
1

(a"0)23/2 and b"0)13/2 m): **, concentric chamber, } } } , centred inlet, o!set outlet chamber with o!set
distance x

c
"0)0479 m.

Figure 15. Analytical transmission loss of elliptical expansion chamber with ¸"0)05 m and eccentricity e
1

(a"0)23/2 and b"0)13/2 m): **, concentric chamber; } } } , centred inlet, o!set outlet chamber with o!set
distance x

c
"0)0479 m.
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(x
c
"0)0479 m), for chamber lengths ¸"0)35 m, ¸"0)10 m and ¸"0)05 m respectively.

The transmission loss corresponding to the longer chamber (Figure 13) is improved since
the well-known behaviour of repeated domes for long chambers described in reference [6] is
also found here until the collapse associated with the propagation of the mode (0, 2). In the
case of the chamber with ¸"0)10 m (Figure 14), the transmission loss obtained with the
o!set also reproduces the "rst two domes, the pass band being associated with "rst pure
longitudinal mode (n"1, 1700 Hz). The bene"ts of the o!set are found in the
high-frequency range, but the TL is reduced from 1000 to 1600 Hz, since the transversal
resonance of the mode (2, 1) is eliminated, which leads to a lower value of attenuation.
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Finally, Figure 15 shows the TL for the shorter chamber whose behaviour is improved due
to the fact that the pass band of the mode (2, 1) is eliminated, although the acoustic
performance is worse in the frequency range from 1100 to 1200 Hz.

6.2. REVERSING CHAMBERS

Figures 16 and 17 show the transmission loss for a long reversing chamber with
¸"0)35 m. In both cases, the centred inlet and o!set outlet con"guration is considered. As
can be seen in Figure 16, the centred inlet avoids the propagation of the elliptic mode (1, 1)
and the well-known one-dimensional behaviour of repetitive peaks in the transmission loss
appears until the onset of the mode (2, 1). The multi-dimensional analytical results and
those obtained via the "nite element method are shown to agree quite well. The comparison
with the plane wave model reveals some di!erences even below the propagation of the mode
(2, 1). In fact, the peaks associated with the one-dimensional resonant frequencies (2n#1)
c
0
/(4¸), n"0, 1,2 , are shifted with respect to the "nite element and analytical results.

The discrepancy is stronger than in the case of expansion chambers, since the evanescent
higher order modes have more in#uence due to the proximity of the inlet and outlet [9]. The
same comments can be applied to Figure 17, in which the low eccentricity chamber is
considered analytically and numerically, as well as a circular chamber with the same
cross-section. Now the cut-o! frequency of 1907)62 Hz associated with the elliptic mode (2,
1) is higher than that corresponding to the high eccentricity chamber (see Figure 16), and so
the range of validity of the plane wave model is increased. In fact, the transmission loss in
the present case has one more peak than in the previous Figure. Some di!erences are found
in the acoustic behaviour of reversing chambers in comparison with the simple expansion
con"guration. In the latter case, it has been shown that the transmission loss of the circular
chamber and the ellipse with low eccentricity is similar, even when the elliptic modes start to
propagate. On the contrary, if reversing chambers are considered, the low eccentricity
geometry shows some di!erences with respect to the circular case below the "rst elliptic
cut-o! frequency, and these discrepancies become more pronounced (see Figure 17) when
Figure 16. Transmission loss of reversing chamber with d
1
"0 m, d

2
"0)06 m and ¸"0)35 m: **,

analytical with e
1

(a"0)23/2 and b"0)13/2 m); #, same with "nite elements; } - } - }, plane wave model.



Figure 17. Transmission loss of reversing chamber with d
1
"0 m, d

2
"0)06 m and ¸"0)35 m: **,

analytical with e
2

(a"0)177/2 and b"0)1688/2 m); #, same with "nite elements; - - - , analytical [9] for circular
chamber with r

eq
"0)1728/2 m; } - } - } , plane wave model.

Figure 18. Transmission loss of reversing chamber with d
1
"0 m, d

2
"0)06 m and ¸"0)10 m: **,

analytical with e
1
(a"0)23/2 and b"0)13/2 m); #, same with "nite elements; } } } , analytical with e

2
(a"0)177/2

and b"0)1688/2 m); ], same with "nite elements; - - - , analytical [9] for circular chamber with r
eq
"0)1782/2 m;

} - } - } , plane wave model.
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the elliptic modes start to propagate without attenuation. The close proximity of the inlet
and outlet pipes leads to a stronger in#uence of the higher order modes.

These trends are also observed in Figure 18, in which the transmission loss for a short
reversing chamber is depicted. The transversal propagation dominates the acoustical
behaviour and so the plane wave model is able to predict the TL only for low frequencies up
to 500 Hz. The "rst resonant peak is very close for the three geometries, circular and
elliptical (with eccentricities e

1
and e

2
), and it is located in the range from 1100 to 1200 Hz.

The circular and the low eccentricity elliptic chambers have similar TL until the onset of the
"rst elliptic mode (2, 1) at a frequency of 1907)62 Hz, which gives signi"cant di!erences in



Figure 19. Analytical transmission loss of elliptical reversing chamber with ¸"0)35 m and eccentricity e
1

(a"0)23/2 and b"0)13/2 m): - - -, o!set inlet and outlet with d
1
"d

2
"0)06 m; } } }, centred inlet, o!set outlet

with d
2
"0)06 m; **, centred inlet, o!set outlet with d

2
"0)0479 m.

Figure 20. Analytical transmission loss of elliptical reversing chamber with ¸"0)10 m and eccentricity e
1

(a"0)23/2 and b"0)13/2 m): - - -, o!set inlet and outlet with d
1
"d

2
"0)06 m; } } }, centred inlet, o!set outlet

with d
2
"0)06; **, centred inlet, o!set outlet with d

2
"0)0479 m.
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the transmission loss even when the eccentricity is very low. In the case of expansion
chambers, some slight deviations were found between the analytical and "nite element
results for a chamber length ¸"0)05 m. In the present case, these slight discrepancies
appear for longer chambers with ¸"0)10 m.

Figures 19 and 20 show the bene"ts of using centred inlet and o!set outlet, the latter
located in the nodal line of the mode (2, 1), in long and short reversing chambers
respectively. For comparison purposes, centred inlet and o!set outlet with arbitrary o!set
outlet distance d

2
"0)06 m as well as o!set inlet/outlet with d

1
"d

2
"0)06 m will be also

analyzed. Considering a long chamber (see Figure 19), the case of o!set inlet/outlet is found
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to give the worst acoustic performance, since the mode (1, 1) starts to propagate at
a frequency of 880 Hz. When the inlet is centred and the outlet is located at a suitable
position, as it was de"ned previously (that is, d

2
"x

c
"0)0479 m for the eccentricity e

1
), the

mode (2, 1) cannot propagate and the cut-o! frequency is moved up to 2840)88 Hz,
associated with the mode (0, 2). In this situation, the acoustic attenuation of the reversing
chamber is improved, increasing the frequency range of the repetitive peak behaviour of the
plane wave model. The same geometries are considered in Figure 20, except the chamber
length, which has been reduced to ¸"0)10 m. The e!ect of o!setting the inlet and outlet is
quite relevant, since it changes the performance of the chamber drastically. In the case of
o!set inlet/outlet, the transmission loss exhibits the dome behaviour of an expansion
chamber with wave propagation [9] along the major axis for frequencies below that
associated with the mode (2, 1) and the "rst pass band appears at a frequency of 880 Hz
(mode (1, 1)). By centring the inlet (dash line), the transmission loss is increased until the
propagation of the mode (2, 1). Now the behaviour shows a resonant peak, and the domes
do not appear. In addition, the bene"ts of the outlet location in the nodal line of this mode
(solid line) can be observed but only in the high-frequency range.

7. CONCLUDING REMARKS

The acoustic attenuation performance of elliptical chamber mu%ers has been studied,
considering the e!ect of the chamber length, the relative inlet and outlet locations and the
eccentricity of the cross-section. An analytical solution of the wave equation in elliptic
co-ordinates, as well as "nite elements and some experimental results have been used. The
analytical solution is based on the modal decomposition of the acoustic "eld, and makes use
of the point source method and Mathieu functions in order to account for the excitation of
the modes. The mathematical complexity of the solution makes it di$cult to "nd an
analytical expression for the cut-o! frequency of the di!erent modes, as is available for the
case of circular expansion chambers. Since the more critical issue related to the propagation
of transversal modes is to obtain a proper de"nition of the applicability limit for the plane
wave theory, it has been preferred to obtain a suitable polynomial "t for the cut-o! frequency
of the "rst propagating transversal mode, which is the even mode (2, 1) for concentric
chambers and the even mode (1, 1) for non-concentric chambers with symmetry about the
major axis. In addition, a polynomial "t has been obtained for a suitable location of the outlet
when the propagation of the mode (2, 1) is intended to be suppressed. In the case of expansion
chambers, the eccentricity has been found to play an important role in propagation of higher
order modes, since the cut-o! frequencies of these are reduced and the transmission loss
collapses at a lower frequency in comparison to circular chambers with the same cross-section
(the higher the eccentricity is, the lower the cut-o! frequency will be). For ellipses with low
eccentricity, the behaviour is found to be quite similar to that associated with the circular case.
If reversing chambers are considered, the same comments can be applied regarding the
reduction of the cut-o! frequency, but now more di!erences appear between the circular
geometry and the elliptic one with low eccentricity. Depending on the frequency range, the
presence of evanescent modes and/or the propagation of elliptic higher order modes is more
important since in this case the inlet and outlet ports are in close proximity.
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